
!1

AutoSeM 

Automatic Task Selection and Mixing in Multi-Task Learning 
Han Guo, Ramakanth Pasunuru, Mohit Bansal 



Overview

1.Introduction 

2.Methods 

3.Experiments

!2



Overview

1.Introduction 

2.Methods 

3.Experiments

!3



Introduction
• Multi-task Learning (MTL) is an inductive 

transfer mechanism which leverages 
information from related tasks to 
improve the primary model’s 
generalization performance. 

• It achieves this goal by training multiple 
tasks in parallel while sharing 
representations, where the training signals 
from the auxiliary tasks can help improve 
the performance of the primary task. 

!4 Caruana, 1997
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along with the primary task.2 Manual tuning
of this mixing ratio via a large grid search over
the hyperparameter values is very time and com-
pute expensive (even when the number of selected
auxiliary tasks is small, e.g., 2 or 3). Thus,
in our second stage, we instead apply a non-
parametric Bayesian approach to search for the
approximately-optimal mixing ratio. In particular,
we use a ‘Gaussian Process’ to sequentially search
for the mixing ratio by trading off exploitation and
exploration automatically. Next, we describe our
Gaussian Process approach in detail.

A Gaussian Process (Rasmussen, 2004; Snoek
et al., 2012; Shahriari et al., 2016), GP(µ0, k),
is a non-parametric model that is fully charac-
terized by a mean function µ0 : X 7! R and
a positive-definite kernel or covariance function
k : X ⇥ X 7! R. Let x1,x2, ...,xn denote any
finite collections of n points, where each xi rep-
resents a choice of the mixing ratio (i.e., the ra-
tio ⌘1:⌘2:..⌘N described in Sec. 3.2), and fi =
f(xi) is the (unknown) function values evaluated
at xi (true performance of the model given the se-
lected mixing ratio). Let y1, y2, ..., yn be the cor-
responding noisy observations (the validation per-
formance at the end of training). In the context
of GP Regression (GPR), f = {f1, ..., fn} are as-
sumed to be jointly Gaussian (Rasmussen, 2004),
i.e., f |X ⇠ N (m,K), where, mi = µ0(xi)
is the mean vector, and Ki,j = k(xi,xj) is the
covariance matrix. Then the noisy observations
y = y1, ..., yn are normally distributed around f
as follows: y|f ⇠ N (f ,�2I).

Given D = (x1, y1), ..., (xn0 , yn0), the set of
random initial observations, where xi represents a
mixing ratio and yi represents the corresponding
model’s validation performance. Next, we model
the GP based on these initial observations as de-
scribed above. We sample a next point xn0+1 (a
mixing ratio in our case) from this GP and get its
corresponding model performance yn0+1, and up-
date the GP again by now considering the n0 + 1
points (Rasmussen, 2004). We continue this pro-
cess for a fixed number of steps. Next, we will
discuss how we perform the sampling (based on
acquisition functions) and the kernels used for cal-

2Note that ideally Gaussian Process can also learn to set
the mixing ratio of less important tasks to zero, hence allow-
ing it to essentially also perform the task selection step. How-
ever, in practice, first applying our task selection Thompson-
Sampling model (Sec. 3.3) allows GP to more efficiently
search the mixing ratio space for the small number of filtered
auxiliary tasks, as shown in results of Sec. 6.1.

culating the covariance.

Acquisition Functions Here, we describe the
acquisition functions for deciding where to sam-
ple next. While one could select the points that
maximize the mean function, this does not al-
ways lead to the best outcome (Hoffman et al.,
2011). Since we also have the variance of the
estimates along with the mean value of each
point xi, we can incorporate this information
into the optimization. In this work, we use
the GP-Hedge approach (Hoffman et al., 2011;
Auer et al., 1995), which probabilistically chooses
one of three acquisition functions: probability
of improvement, expected improvement, and up-
per confidence bound. Probability of improve-
ment acquisition functions measure the probabil-
ity that the sampled mixing ratio xi leads to an
improvement upon the best observed value so far
(⌧ ), P(f(xi) > ⌧). Expected improvement addi-
tionally incorporates the amount of improvement,
E[(f(xi) � ⌧)I(f(xi) > ⌧)]. The Gaussian Pro-
cess upper confidence bound (GP-UCB) algorithm
measures the optimistic performance upper bound
of the sampled mixing ratio (Srinivas et al., 2009),
µi(xi) + ��i(xi), for some hyper-parameter �.

Matern Kernel The covariance function (or ker-
nel) defines the nearness or similarity of two points
in the Gaussian Process. Here, we use the auto-
matic relevance determination (ARD) Matern ker-
nel (Rasmussen, 2004), which is parameterized by
⌫ > 0 that controls the level of smoothness. In
particular, samples from a GP with such a kernel
are differentiable b⌫ � 1c times. When ⌫ is half-
integer (i.e. ⌫ = p+ 1/2 for non-negative integer
p), the covariance function is a product of an expo-
nential and a polynomial of order p. In the context
of machine learning, usual choices of ⌫ include
3/2 and 5/2 (Shahriari et al., 2016).

4 Experiment Setup

Datasets: We evaluate our models on several
datasets from the GLUE benchmark (Wang et al.,
2018): RTE, QNLI, MRPC, SST-2, and CoLA.
For all these datasets, we use the standard splits
provided by Wang et al. (2018). For dataset de-
tails, we refer the reader to the GLUE paper.3

3We did not include the remaining tasks as primary tasks,
because STS-B is a regression task; MNLI is a very large
dataset and does not benefit much from MTL with other tasks
in the GLUE benchmark; and QQP and WNLI have dev/test
discrepancies and adversarial label issues as per the GLUE
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responding noisy observations (the validation per-
formance at the end of training). In the context
of GP Regression (GPR), f = {f1, ..., fn} are as-
sumed to be jointly Gaussian (Rasmussen, 2004),
i.e., f |X ⇠ N (m,K), where, mi = µ0(xi)
is the mean vector, and Ki,j = k(xi,xj) is the
covariance matrix. Then the noisy observations
y = y1, ..., yn are normally distributed around f
as follows: y|f ⇠ N (f ,�2I).

Given D = (x1, y1), ..., (xn0 , yn0), the set of
random initial observations, where xi represents a
mixing ratio and yi represents the corresponding
model’s validation performance. Next, we model
the GP based on these initial observations as de-
scribed above. We sample a next point xn0+1 (a
mixing ratio in our case) from this GP and get its
corresponding model performance yn0+1, and up-
date the GP again by now considering the n0 + 1
points (Rasmussen, 2004). We continue this pro-
cess for a fixed number of steps. Next, we will
discuss how we perform the sampling (based on
acquisition functions) and the kernels used for cal-

2Note that ideally Gaussian Process can also learn to set
the mixing ratio of less important tasks to zero, hence allow-
ing it to essentially also perform the task selection step. How-
ever, in practice, first applying our task selection Thompson-
Sampling model (Sec. 3.3) allows GP to more efficiently
search the mixing ratio space for the small number of filtered
auxiliary tasks, as shown in results of Sec. 6.1.

culating the covariance.

Acquisition Functions Here, we describe the
acquisition functions for deciding where to sam-
ple next. While one could select the points that
maximize the mean function, this does not al-
ways lead to the best outcome (Hoffman et al.,
2011). Since we also have the variance of the
estimates along with the mean value of each
point xi, we can incorporate this information
into the optimization. In this work, we use
the GP-Hedge approach (Hoffman et al., 2011;
Auer et al., 1995), which probabilistically chooses
one of three acquisition functions: probability
of improvement, expected improvement, and up-
per confidence bound. Probability of improve-
ment acquisition functions measure the probabil-
ity that the sampled mixing ratio xi leads to an
improvement upon the best observed value so far
(⌧ ), P(f(xi) > ⌧). Expected improvement addi-
tionally incorporates the amount of improvement,
E[(f(xi) � ⌧)I(f(xi) > ⌧)]. The Gaussian Pro-
cess upper confidence bound (GP-UCB) algorithm
measures the optimistic performance upper bound
of the sampled mixing ratio (Srinivas et al., 2009),
µi(xi) + ��i(xi), for some hyper-parameter �.

Matern Kernel The covariance function (or ker-
nel) defines the nearness or similarity of two points
in the Gaussian Process. Here, we use the auto-
matic relevance determination (ARD) Matern ker-
nel (Rasmussen, 2004), which is parameterized by
⌫ > 0 that controls the level of smoothness. In
particular, samples from a GP with such a kernel
are differentiable b⌫ � 1c times. When ⌫ is half-
integer (i.e. ⌫ = p+ 1/2 for non-negative integer
p), the covariance function is a product of an expo-
nential and a polynomial of order p. In the context
of machine learning, usual choices of ⌫ include
3/2 and 5/2 (Shahriari et al., 2016).

4 Experiment Setup

Datasets: We evaluate our models on several
datasets from the GLUE benchmark (Wang et al.,
2018): RTE, QNLI, MRPC, SST-2, and CoLA.
For all these datasets, we use the standard splits
provided by Wang et al. (2018). For dataset de-
tails, we refer the reader to the GLUE paper.3

3We did not include the remaining tasks as primary tasks,
because STS-B is a regression task; MNLI is a very large
dataset and does not benefit much from MTL with other tasks
in the GLUE benchmark; and QQP and WNLI have dev/test
discrepancies and adversarial label issues as per the GLUE

along with the primary task.2 Manual tuning
of this mixing ratio via a large grid search over
the hyperparameter values is very time and com-
pute expensive (even when the number of selected
auxiliary tasks is small, e.g., 2 or 3). Thus,
in our second stage, we instead apply a non-
parametric Bayesian approach to search for the
approximately-optimal mixing ratio. In particular,
we use a ‘Gaussian Process’ to sequentially search
for the mixing ratio by trading off exploitation and
exploration automatically. Next, we describe our
Gaussian Process approach in detail.

A Gaussian Process (Rasmussen, 2004; Snoek
et al., 2012; Shahriari et al., 2016), GP(µ0, k),
is a non-parametric model that is fully charac-
terized by a mean function µ0 : X 7! R and
a positive-definite kernel or covariance function
k : X ⇥ X 7! R. Let x1,x2, ...,xn denote any
finite collections of n points, where each xi rep-
resents a choice of the mixing ratio (i.e., the ra-
tio ⌘1:⌘2:..⌘N described in Sec. 3.2), and fi =
f(xi) is the (unknown) function values evaluated
at xi (true performance of the model given the se-
lected mixing ratio). Let y1, y2, ..., yn be the cor-
responding noisy observations (the validation per-
formance at the end of training). In the context
of GP Regression (GPR), f = {f1, ..., fn} are as-
sumed to be jointly Gaussian (Rasmussen, 2004),
i.e., f |X ⇠ N (m,K), where, mi = µ0(xi)
is the mean vector, and Ki,j = k(xi,xj) is the
covariance matrix. Then the noisy observations
y = y1, ..., yn are normally distributed around f
as follows: y|f ⇠ N (f ,�2I).

Given D = (x1, y1), ..., (xn0 , yn0), the set of
random initial observations, where xi represents a
mixing ratio and yi represents the corresponding
model’s validation performance. Next, we model
the GP based on these initial observations as de-
scribed above. We sample a next point xn0+1 (a
mixing ratio in our case) from this GP and get its
corresponding model performance yn0+1, and up-
date the GP again by now considering the n0 + 1
points (Rasmussen, 2004). We continue this pro-
cess for a fixed number of steps. Next, we will
discuss how we perform the sampling (based on
acquisition functions) and the kernels used for cal-

2Note that ideally Gaussian Process can also learn to set
the mixing ratio of less important tasks to zero, hence allow-
ing it to essentially also perform the task selection step. How-
ever, in practice, first applying our task selection Thompson-
Sampling model (Sec. 3.3) allows GP to more efficiently
search the mixing ratio space for the small number of filtered
auxiliary tasks, as shown in results of Sec. 6.1.

culating the covariance.

Acquisition Functions Here, we describe the
acquisition functions for deciding where to sam-
ple next. While one could select the points that
maximize the mean function, this does not al-
ways lead to the best outcome (Hoffman et al.,
2011). Since we also have the variance of the
estimates along with the mean value of each
point xi, we can incorporate this information
into the optimization. In this work, we use
the GP-Hedge approach (Hoffman et al., 2011;
Auer et al., 1995), which probabilistically chooses
one of three acquisition functions: probability
of improvement, expected improvement, and up-
per confidence bound. Probability of improve-
ment acquisition functions measure the probabil-
ity that the sampled mixing ratio xi leads to an
improvement upon the best observed value so far
(⌧ ), P(f(xi) > ⌧). Expected improvement addi-
tionally incorporates the amount of improvement,
E[(f(xi) � ⌧)I(f(xi) > ⌧)]. The Gaussian Pro-
cess upper confidence bound (GP-UCB) algorithm
measures the optimistic performance upper bound
of the sampled mixing ratio (Srinivas et al., 2009),
µi(xi) + ��i(xi), for some hyper-parameter �.

Matern Kernel The covariance function (or ker-
nel) defines the nearness or similarity of two points
in the Gaussian Process. Here, we use the auto-
matic relevance determination (ARD) Matern ker-
nel (Rasmussen, 2004), which is parameterized by
⌫ > 0 that controls the level of smoothness. In
particular, samples from a GP with such a kernel
are differentiable b⌫ � 1c times. When ⌫ is half-
integer (i.e. ⌫ = p+ 1/2 for non-negative integer
p), the covariance function is a product of an expo-
nential and a polynomial of order p. In the context
of machine learning, usual choices of ⌫ include
3/2 and 5/2 (Shahriari et al., 2016).

4 Experiment Setup

Datasets: We evaluate our models on several
datasets from the GLUE benchmark (Wang et al.,
2018): RTE, QNLI, MRPC, SST-2, and CoLA.
For all these datasets, we use the standard splits
provided by Wang et al. (2018). For dataset de-
tails, we refer the reader to the GLUE paper.3

3We did not include the remaining tasks as primary tasks,
because STS-B is a regression task; MNLI is a very large
dataset and does not benefit much from MTL with other tasks
in the GLUE benchmark; and QQP and WNLI have dev/test
discrepancies and adversarial label issues as per the GLUE
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Wang et al., 2018; Warstadt et al., 2018; Socher et al., 2013; Dolan & Brockett, 2005; Cer et al., 
2017; Williams et al., 2018; Bowman et al., 2015; Rajpurkar et al. 2016; Dagan et al., 2006; Bar 

Haim etal.,2006; Giampiccoloetal.,2007; Bentivoglietal.,2009; Levesque et al., 2011
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RTE: MRPC, QQP, MultiNLI, QNLI, WNLI 
MRPC: QQP, MultiNLI, QNLI, RTE, WNLI 
QNLI: MRPC, QQP, MultiNLI, RTE, WNLI 
CoLA: MRPC, QQP, MultiNLI, QNLI, RTE, WNLI, SST-2 
SST-2: MRPC, QQP, MultiNLI, QNLI, RTE, WNLI, CoLA

Selected Auxiliary Tasks (Stage-1)
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RTE: MRPC, QQP, MultiNLI, QNLI, WNLI 
MRPC: QQP, MultiNLI, QNLI, RTE, WNLI 
QNLI: MRPC, QQP, MultiNLI, RTE, WNLI 
CoLA: MRPC, QQP, MultiNLI, QNLI, RTE, WNLI, SST-2 
SST-2: MRPC, QQP, MultiNLI, QNLI, RTE, WNLI, CoLA

MultiNLI is always 
chosen in Stage-1

Selected Auxiliary Tasks (Stage-1)
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RTE: QQP, MultiNLI = 1:5:5  
MRPC: RTE, MultiNLI = 9:1:4  
QNLI: WNLI, MultiNLI = 20:0:5  
CoLA: MultiNLI, WNLI = 20:5:0 
SST-2: MultiNLI, MRPC, WNLI = 13:5:0:0

Learned Mixing Ratios (Stage-2)
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selection stage of our AUTOSEM framework, we
observe that MultiNLI is chosen as one of the aux-
iliary tasks in all of our MTL models. This is intu-
itive given that MultiNLI contains multiple genres
covering diverse aspects of the complexity of lan-
guage (Conneau et al., 2017). Also, we observe
that WNLI is sometimes chosen in the task selec-
tion stage; however, it is always dropped (mixing
ratio of zero) by the Gaussian Process controller,
showing that it is not beneficial to use WNLI as
an auxiliary task (intuitive, given its small size).
Next, we discuss the improvements on each of
the primary tasks and the corresponding auxiliary
tasks selected by AUTOSEM framework.
RTE: Our AUTOSEM approach achieves stronger
results w.r.t. the baseline on RTE (58.7 vs. 54.0).
During our task selection stage, we found out that
QQP and MultiNLI tasks are important for RTE
as auxiliary tasks. For the second stage of auto-
matic mixing ratio learning via Gaussian Process,
the model learns that a mixing ratio of 1:5:5 works
best to improve the primary task (RTE) using re-
lated auxiliary tasks of QQP and MultiNLI.
MRPC: AUTOSEM here performs much bet-
ter than the baseline on MRPC (78.5/84.5 vs.
75.7/83.7). During our task selection stage, we
found out that RTE and MultiNLI tasks are impor-
tant for MRPC as auxiliary tasks. In the second
stage, AUTOSEM learned a mixing ratio of 9:1:4
for these three tasks (MRPC:RTE:MultiNLI).
QNLI: Again, we achieve substantial improve-
ments with AUTOSEM w.r.t. baseline on QNLI
(79.2 vs. 74.0). Our task selection stage learned
that WNLI and MultiNLI tasks are best as auxil-
iary tasks for QNLI. We found that the Gaussian
Process further drops WNLI by setting its mixing
ratio to zero, and returns 20:0:5 as the best mixing
ratio for QNLI:WNLI:MultiNLI.
CoLA: We also observe a strong performance im-
provement on CoLA with our AUTOSEM model
w.r.t. our baseline (32.9 vs. 30.8). During our
task selection stage, we found out that MultiNLI
and WNLI tasks are important for CoLA as auxil-
iary tasks. In the second stage, GP learns to drop
WNLI, and found the mixing ratio of 20:5:0 for
CoLA:MultiNLI:WNLI.
SST-2: Here also our AUTOSEM approach per-
forms better than the baseline (91.8 vs. 91.3). The
task selection stage chooses MultiNLI, MRPC,

terpretably chooses the 2-3 tasks that are most beneficial for
the given primary task. Also see Sec. 4 for comparison of
training speeds for these two setups.

Name Validation Test
Baseline 78.3 75.7/83.7
w/o Stage-1 80.3 76.3/83.8
w/o Stage-2 80.3 76.7/83.8
Final MTL 81.2 78.5/84.5

Table 2: Ablation results on the two stages of our AU-
TOSEM framework on MRPC.

and WNLI as auxiliary tasks and the stage-2 Gaus-
sian Process model drops MRPC and WNLI by
setting their mixing ratio to zero (learns ratio of
13:5:0:0 for SST-2:MultiNLI:MRPC:WNLI).

6 Analysis

6.1 Ablation on MTL stages

In this section, we examine the usefulness of each
stage of our two-stage MTL pipeline.11

Removing Stage-1: The purpose of the Beta-
Bernoulli MAB in stage-1 is to find useful aux-
iliary tasks for the given primary task. Here, to
understand its importance, we remove the task se-
lection part, and instead directly run the Gaussian
Process (GP) model on all tasks (see ‘w/o Stage-
1’ row in Table 2). We can see that by remov-
ing the task selection stage, the Gaussian Process
model can still outperform the baseline, indicat-
ing the usefulness of the GP, but the large mixing
ratio search space causes the GP to be unable to
efficiently find the best mixing ratio setting.
Removing Stage-2: Given the selected tasks from
stage-1, the goal of the Gaussian Process in stage-
2 is to efficiently find the approximately-optimal
mixing ratio. To examine its usefulness, we re-
place the Gaussian Process controller by manually
tuning a grid of mixing ratios, where the num-
ber of tuning experiments equals to the number of
steps used in the Gaussian Process model (for a
fair comparison). Table 2 shows the results by re-
moving stage-2. We can see that a grid search over
hyper-parameters can improve upon the baseline,
indicating the usefulness of stage-1 task selection,
but a reasonable-sized fair-comparison grid search
(i.e., not exhaustive over all ratio values) is not
able to match our stage-2 GP process that lever-
ages prior experimental results to more efficiently
find the best setting.

11We present this ablation only on MRPC for now, because
GP stage-2 takes a lot of time without the task selection stage.

(MRPC Dataset)

w/o Stage-1: Applying Gaussian process on all candidate auxiliary tasks.
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selection stage of our AUTOSEM framework, we
observe that MultiNLI is chosen as one of the aux-
iliary tasks in all of our MTL models. This is intu-
itive given that MultiNLI contains multiple genres
covering diverse aspects of the complexity of lan-
guage (Conneau et al., 2017). Also, we observe
that WNLI is sometimes chosen in the task selec-
tion stage; however, it is always dropped (mixing
ratio of zero) by the Gaussian Process controller,
showing that it is not beneficial to use WNLI as
an auxiliary task (intuitive, given its small size).
Next, we discuss the improvements on each of
the primary tasks and the corresponding auxiliary
tasks selected by AUTOSEM framework.
RTE: Our AUTOSEM approach achieves stronger
results w.r.t. the baseline on RTE (58.7 vs. 54.0).
During our task selection stage, we found out that
QQP and MultiNLI tasks are important for RTE
as auxiliary tasks. For the second stage of auto-
matic mixing ratio learning via Gaussian Process,
the model learns that a mixing ratio of 1:5:5 works
best to improve the primary task (RTE) using re-
lated auxiliary tasks of QQP and MultiNLI.
MRPC: AUTOSEM here performs much bet-
ter than the baseline on MRPC (78.5/84.5 vs.
75.7/83.7). During our task selection stage, we
found out that RTE and MultiNLI tasks are impor-
tant for MRPC as auxiliary tasks. In the second
stage, AUTOSEM learned a mixing ratio of 9:1:4
for these three tasks (MRPC:RTE:MultiNLI).
QNLI: Again, we achieve substantial improve-
ments with AUTOSEM w.r.t. baseline on QNLI
(79.2 vs. 74.0). Our task selection stage learned
that WNLI and MultiNLI tasks are best as auxil-
iary tasks for QNLI. We found that the Gaussian
Process further drops WNLI by setting its mixing
ratio to zero, and returns 20:0:5 as the best mixing
ratio for QNLI:WNLI:MultiNLI.
CoLA: We also observe a strong performance im-
provement on CoLA with our AUTOSEM model
w.r.t. our baseline (32.9 vs. 30.8). During our
task selection stage, we found out that MultiNLI
and WNLI tasks are important for CoLA as auxil-
iary tasks. In the second stage, GP learns to drop
WNLI, and found the mixing ratio of 20:5:0 for
CoLA:MultiNLI:WNLI.
SST-2: Here also our AUTOSEM approach per-
forms better than the baseline (91.8 vs. 91.3). The
task selection stage chooses MultiNLI, MRPC,

terpretably chooses the 2-3 tasks that are most beneficial for
the given primary task. Also see Sec. 4 for comparison of
training speeds for these two setups.

Name Validation Test
Baseline 78.3 75.7/83.7
w/o Stage-1 80.3 76.3/83.8
w/o Stage-2 80.3 76.7/83.8
Final MTL 81.2 78.5/84.5

Table 2: Ablation results on the two stages of our AU-
TOSEM framework on MRPC.

and WNLI as auxiliary tasks and the stage-2 Gaus-
sian Process model drops MRPC and WNLI by
setting their mixing ratio to zero (learns ratio of
13:5:0:0 for SST-2:MultiNLI:MRPC:WNLI).

6 Analysis

6.1 Ablation on MTL stages

In this section, we examine the usefulness of each
stage of our two-stage MTL pipeline.11

Removing Stage-1: The purpose of the Beta-
Bernoulli MAB in stage-1 is to find useful aux-
iliary tasks for the given primary task. Here, to
understand its importance, we remove the task se-
lection part, and instead directly run the Gaussian
Process (GP) model on all tasks (see ‘w/o Stage-
1’ row in Table 2). We can see that by remov-
ing the task selection stage, the Gaussian Process
model can still outperform the baseline, indicat-
ing the usefulness of the GP, but the large mixing
ratio search space causes the GP to be unable to
efficiently find the best mixing ratio setting.
Removing Stage-2: Given the selected tasks from
stage-1, the goal of the Gaussian Process in stage-
2 is to efficiently find the approximately-optimal
mixing ratio. To examine its usefulness, we re-
place the Gaussian Process controller by manually
tuning a grid of mixing ratios, where the num-
ber of tuning experiments equals to the number of
steps used in the Gaussian Process model (for a
fair comparison). Table 2 shows the results by re-
moving stage-2. We can see that a grid search over
hyper-parameters can improve upon the baseline,
indicating the usefulness of stage-1 task selection,
but a reasonable-sized fair-comparison grid search
(i.e., not exhaustive over all ratio values) is not
able to match our stage-2 GP process that lever-
ages prior experimental results to more efficiently
find the best setting.

11We present this ablation only on MRPC for now, because
GP stage-2 takes a lot of time without the task selection stage.

w/o Stage-2: Apply manual tuning of mixing ratios on selected auxiliary tasks.

(MRPC Dataset)
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Figure 3: Visualization of task utility estimates from
the multi-armed bandit controller on SST-2 (primary
task). The x-axis represents the task utility, and the y-
axis represents the corresponding probability density.
Each curve corresponds to a task and the bar corre-
sponds to their confidence interval.

6.2 Stability of MTL Models
In this section, we provide the mean and standard
deviation of our baseline and multi-task models
(over three runs) on the validation set. Note that
the test set is hidden, so we cannot do these stud-
ies on it. As seen in Table 3, our multi-task models
clearly surpass the performance of baseline mod-
els w.r.t. standard deviation gaps, in all tasks.

6.3 Visualization of Task Selection
In Fig. 3, we show an example of the task util-
ity estimates from the stage-1 multi-armed bandit
controller (Eq. 3.3) on SST-2. The x-axis repre-
sents the task utility, and the y-axis represents the
probability density over task utility. Each curve
represents a task (the blue curve corresponds to
the primary task, SST-2, and the rest of the curves
correspond to auxiliary tasks), and the width of the
bars represents the confidence interval of their es-
timates. We can see that the bandit controller gives
the highest (and most confident) utility estimate
for the primary task, which is intuitive given that
the primary task should be the most useful task for
learning itself. Further, it gives 2-3 tasks moderate
utility estimates (the corresponding expected val-
ues are around 0.5), and relatively lower utility es-
timates for the remaining tasks (the corresponding
expected values are lower than 0.5).

6.4 Educated-Guess Baselines
We additionally experimented with ‘educated-
guess’ baseline models, where MTL is performed
using manual intuition mixtures that seem a

Name RTE MRPC QNLI CoLA SST-2
BASELINES

Mean 58.6 78.3 74.9 74.6 91.4
Std 0.94 0.31 0.30 0.44 0.36

MULTI-TASK MODELS
Mean 62.0 81.1 76.0 75.7 91.8
Std 0.62 0.20 0.18 0.18 0.29

Table 3: Validation-set performance mean and standard
deviation (based on three runs) of our baselines and
Multi-task models in accuracy.

priori sensible.12 For example, with MRPC
as the primary task, our first educated-guess
baseline is to choose other similar paraphrasing-
based auxiliary tasks, i.e., QQP in case of
GLUE. This MRPC+QQP model achieves
80.8, whereas our AUTOSEM framework chose
MRPC+RTE+MultiNLI and achieved 81.2. Fur-
thermore, as our second educated-guess baseline,
we added MultiNLI as an auxiliary task (in
addition to QQP), since MultiNLI was helpful for
all tasks in our MTL experiments. This educated-
guess MRPC+QQP+MultiNLI model achieves
80.9 (vs. 81.2 for our AUTOSEM model). This
suggests that our AUTOSEM framework (that
automatically chose the seemingly less-related
RTE task for MRPC) is equal or better than
manual intuition based educated-guess models.

7 Conclusion

We presented the AUTOSEM framework, a two-
stage multi-task learning pipeline, where the first
stage automatically selects the relevant auxiliary
tasks for the given primary task and the second
stage automatically learns their optimal mixing ra-
tio. We showed that AUTOSEM performs better
than strong baselines on several GLUE tasks. Fur-
ther, we ablated the importance of each stage of
our AUTOSEM framework and also discussed the
intuition of selected auxiliary tasks.
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Visualization of task utility 
estimates from the multi-
armed bandit controller on 
SST-2 (primary task). The x-
axis represents the task utility, 
and the y- axis represents the 
corresponding probability 
density. Each curve 
corresponds to a task and the 
bar corresponds to their 
confidence interval.
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